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1. Introduction 

This deliverable consists of the implementation of smart-rules effectively executing 

cryptographic operation and data transformations using a human readable language 

modeled according to a taxonomy of subjects and predicates found in the pilot 

applications. It delivers a technology that brings together expression and execution into 

utterances based on translatable human language phrases. This technology is a simple, 

non-touring complete natural language interpreter (Zencode) based on a domain 

specific language (DSL) that can run and execute inside a very portable virtual machine 

(Zenroom) capable of cryptographic transformations. 

Since DECODE project's inception, reaching this point of development has been an 

extremely motivating ambition, as it also serves an important solution for the techno-

political implications illustrated by the AlgoSov.eu observatory and the recently published 

Ph..D thesis "Algorithmic Sovereignty" (Roio, 2018). 

 

1.1. For the awareness of algorithms 

The goal of this task is ultimately that of realizing a simple, non-technical, human-readable 

language for smart-rules that are actually executed in a verifiable and provable manner 

within the Zenroom controlled execution environment. 

To articulate the importance of this quest and the relevance of the results presented, 

which I believe to be unique in the landscape of blockchain smart-contract languages, is 

important to remind us of the condition in which most people find themselves when 

participating in the regime of truth that is built by algorithms. 

As the demand and production of well-connected vessels for the digital dimension has 

boomed, machine-readable code today functions as a literature informing the 

architecture in which human interactions happens and decisions are taken. The telematic 

condition is realised by an integrated datawork continuously engaging the observer as a 

participant. Such a "Gesamtdatenwerk" (Ascott, 1990) may seem an abstract 

architecture, yet it can be deeply binding under legal, ethical and moral circumstances. 

The comprehension of algorithms, the awareness of the way decisions are formulated, the 

implications of their execution, is not just a technical condition, but a political one, for 

which access to information cannot be just considered a feature, but a civil right (Pelizza 

and Kuhlmann, 2017). It is important to understand this in relation to the "classical" 

application of algorithms executed in a centralized manner, but even more in relation to 

distributed computing scenarios posed by blockchain technologies, which theorize a 

future in which rules and contracts are executed irrevocably and without requiring any 

human agency. 

The legal implications with regards to standing rights and liabilities are out of the scope 

here, while the focus is on ways humans, even when lacking technical literacy, can be 

made aware of what an algorithm does. Is it possible to establish the ground for a shared 

language that informs digital architects about their choices and inhabitants about the 

digital territory? Going past assumptions about the strong role algorithms have in 

governance and accountability (Diakopoulos, 2016), how can we inform digital citizens 

about their condition? 

https://algosov.eu/
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When describing the virtualisation of economic activity in the global context, 

Saskia Sassen describes the need we are observing as that of an analytical vocabulary: 

The third component in the new geography of power is the growing importance of 

electronic space. There is much to be said on this issue. Here, I can isolate one 

particular matter: the distinctive challenge that the virtualization of a growing 

number of economic activities presents not only to the existing state regulatory 

apparatus, but also to private-sector institutions increasingly dependent on the new 

technologies. Taken to its extreme, this may signal a control crisis in the making, one 

for which we lack an analytical vocabulary.(Sassen, 1996) 

The analysis of legal texts and regulations here shifts into an entirely new domain; it has to 

refer to conditions that only algorithms can help build or destroy. Thus, referring to this 

theoretical framework, the research and development of a free and open source 

language that is intellegible to humans becomes of crucial importance and, from an 

ethical standing point, DECODE as many other projects in the same space cannot be 

exempted from addressing it. 

When we consider algorithms as contracts regulating relationships (between humans, 

between humans and nature and, nowadays more increasingly, between different 

contexts of nature itself) then we should adopt a representation that is close to how the 

human mind works and that is directly connected to the language adopted. Since 

algorithms are the systemic product of complex relationships between contracts and 

relevant choices made by standing actors (Monico, 2014), the ability to verify which 

algorithms are in place for a certain result to be visualised becomes very important and 

should be embedded in every application: to understand and communicate what 

algorithms and to describe and experiment their repercussions on reality. 
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2. Implementation 

This section describes the salient implementation details of the Zencode DSL, the smart-

rule language for DECODE, tailored on its use-cases and based on the Zenroom controlled 

execution environment (VM). Implementation details refer only to Zencode and not to 

how Zenroom is implemented, since the latter is already covered in other documents. 

The implementation section contains three parts explaining: 

 the language model inherited by Behaviour Driven Development 

 the data validation model based on Schema Validation 

 the implementation of implicit certificates 

 

2.1. Behaviour Driven Development 

In Behaviour Driven Development (BDD), the important role of software integration and 

unit tests is extended to serve both the purposes of designing the human-machine 

interaction flow (user journey in UX terms) and of laying down a common ground for 

interaction between designers and stakeholders. In this Agile software development 

methodology the software testing suite is based on natural language units that grant a 

common understanding for all participants and observers. 

To implement BDD the first step is that of mapping a series of interconnected cascading 

sentences to actual source code; this implementation is usually done manually by 

programmers that have knowledge of the higher level application protocol interface (API) 

that grants communication between the backend and the frontend of a software 

application. The BDD implementation can then be seen as an alternative frontend whose 

purpose is that of lowering the distance between expression and execution by means of 

utterances expressed in human language. 

Far from giving an exhaustive description of BDD implementations and characteristics, this 

brief chapter intends to summarise the features of this approach where they specifically 

apply to the development goals of Zencode (previously stated) and the solution provided. 

Referring to the Cucumber implementation of BDD, arguably the most popular in use by 

the industry to day and factual standard (Wynne, 2012), the grammar of utterances is very 

simple and definable as a "cascading" flow indeed, since the fixed sequence of lines can 

follow only one fixed order: 

Given .. and* .. When .. and* .. Then print .. 

This sequence is fixed and in simple terms consists of: 

1. an extendable initialisation of states "Given (and)" 

2. followed by an extendable transformation of states "When (and)" 

3. concluded by returning the final states "Then print". 

The Zenroom implementation is kept simple at this stage and does not takes any "fuzzy" 

approach to the parsing, but simply defines fixed sequences of strings and variables that 
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are expected to occur within them: the variables are what is ultimately 

possible to change by users and are marked by a repeating sequence of two adjacent 

single quotes ('  '). 

The underlying parser acts upon a positive, unique and so far non-flexible match of the 

whole phrase minus the variables, then executes a function that takes as many arguments 

as the variables present in the lines across the utterance. As a result, every single non-

repeating line of the utterance has a declared function that interacts with the underlying 

implementation of Zenroom, whose actions are defined in its LUA subset language. 

Brief examples of this implementation follow: 

Given("I introduce myself as ''", function(name) whoami = name end) 

Given("I am known as ''",         function(name) whoami = name end) 

The above definition of two lines possibly occurring within the utterances in Zencode are 

demonstrating how a state "who am I" basically my own name can be set using two 

different phrases, leading to the execution of the same function which basically operates 

a simple assignment to the variable whoami. This simple demonstration is a hint to the fact 

that multiple patterns can be defined also in different ways, making the Zencode DSL 

implementation very easy to translate across different spoken languages as well 

contextualised within specific idiolects adopted by humans. 

Furthermore, another example of implementation: 

Given("that '' declares to be ''",function(who, decl) 

         -- declaration 

         if not declared then declared = decl 

         else declared = declared .." and ".. decl end 

         whois = who 

end) 

Given("declares also to be ''", function(decl) 

         ZEN.assert(who ~= "", "The subject making the declaration is unknown") 

         -- declaration 

         if not declared then declared = decl 

         else declared = declared .." and ".. decl end 

end) 

Shows how is possible to accept multiple variables and process them through more 

complex transformations that also contemplate the concatenation of contents to 

previous states. States are in fact permanent within the scope of the execution of a single 

utterance and will be modified in the same deterministic order by which they are 

expressed across lines. What is also visible within this example implementation, which we 

intend to facilitate by customisation made by people who have a simple knowledge of 

Zenroom's API and LUA scripting, is that the 'ZEN.' namespace makes available a number 

of utility functions to easily check states (asserts) and propagate meaningful error 

messages that are then part of a backtrace output given to the calling application (host) 

on occurrence of an error. 

The full implementation of Zencode available at the time of publishing this document is 

inside the source-code files 'zenroom/src/lua/zencode_*' and is relatively easy to maintain 

for the pilots analysed in our project, as well easy to extend to more use-cases. The current 

implementation addresses specific schemes that useful to the pilots in DECODE, while 

contemplating future extension: 

 Simple symmetric encryption of ciphertext by means of a PIN and KDF transformations 

(pilot: Amsterdam Register) 
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 Diffie-Hellman asymmetric key encryption (AES-GCM) (pilot: Making 

Sense IoT) 

 Blind-sign credentials for unlinkable selective attribute revelations1 (pilot: DECIDIM and 

Gebied Online) 

 In addition there is also the implementation of an "implicit certificate" crypto scheme 

(Qu-Vanstone, ECQV) that is limited to first order curve transformations, which may 

apply to pilots requiring simple certification schemes2. 

All the implementations are illustrated in more detail in the following chapters. 

 

2.2. Declarative Schema Validation 

In order to make the processing of Zencode more robust, all data used as input and 

output for its computations is validated according to predefined schemas. This makes the 

Zencode DSL a declarative language in which data recognition is operated before 

processing. 

The data schemas are added on a per-usecase basis: they refer to specific cryptographic 

implementations as they are added in Zencode. Careful evaluation regarding their 

addition is made to realise if old schemas can be extended to include new requirements. 

Schemas are expressed in a simple format using Lua scripting syntax, for example: 

-- zencode_keypair 

keypair = S.record { 

    schema = S.Optional(S.string), 

    private = S.Optional(S.hex), 

    public = S.ecp 

} 

The schema above is the smallest and most commonly used one, composed by one 

required field and two optional ones, used to validate the input and output of 

public/private keypairs to be used in transformations. 

The only required field in the schema is the 'public' key which is validated using the 'ECP' 

type ('S.' is an abbreviation for the 'SCHEMA.' namespace). The validation of 'S.ECP' is an 

actual cryptographic validation: Zenroom will check that the big integer number 

represented by the field corresponds to a valid point on the curve. In case the validation is 

not passed, the execution of the Zencode script will not take place and Zenroom will 

return a meaningful error message indicating the wrong field. 

The other optional field is the 'private' key which can correspond to any sequence of 

values, therefore no cryptographic validation is possible for it; in this case then the 

validation used is one that refers to the encoding of the field: 'S.hex' is verifying that the 

value is encoded with a sequence of characters that express only hexadecimal numbers 

                       

1 This implementation refers to work on the Coconut credential system (Sonnino et. al, 2018) designed after 

specific needs in DECODE's pilots. It does not implement, however, the threshold issuance part, which is only 

required in the scenario of a fully open blockchain implementation, which is still work in progress. 

2 It is important to note that while the ECQV scheme was not examined by other partners in our project, it has 

been choosen for its stable role in the industry and for its augmented complexity within an approachable 

implementation, complexity which could better inform the Zencode implementation. 
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(that is, 0..9 numbers and case-insensitive letters from A to Z). Other encoding 

tests are also available, for instance 'S.base64' if that is the encoding used in the specific 

implementation. 

Another more complex example follows: 

-- packets encoded with AES GCM 

AES-GCM = S.record { 

    checksum = S.hex, 

    iv = S.hex, 

    schema = S.Optional(S.string), 

    text = S.hex, 

    zenroom = S.Optional(S.string), 

    encoding = S.string, 

    curve = S.string, 

    pubkey = S.ecp 

} 

In this example no new validations are being used and in fact it just adds fields compared 

to the previous: it defines a portable packet of ciphertext data that is returned as output 

of AES-GCM asymmetric encryption as well is accepted as input to AES-GCM decryption. 

A similarity between these two examples is evident: the presence of the 'schema' field. This 

field is a sort of "introspective" indication matching the data structure to its schema 

specification. If this field is not present (as it is always optional) then no validation on the 

data structure will take place, meaning the Zencode implementation leaves the risk (and 

hopefully the validation task) to the host. 

This chapter ends with the current implementation of schema validation data types that 

are currently implemented for symmetric and asymmetric encryption of ciphertexts as well 

for implicit certificates. The schema implementation for Zencode is maintained into the 

sourcecode within the source file 'src/lua/zencode_schemas.lua' and can be accessed 

by the function 'ZEN.validate(data,'schema','error')' which is a wrapper of 

'ZEN.assert(validate(data,schemas['schema']),'error')'. 

_G['schemas'] = { 

 

   -- packets encoded with AES GCM 

   AES-GCM = S.record { 

      checksum = S.hex, 

      iv = S.hex, 

      schema = S.Optional(S.string), 

      text = S.hex, 

      zenroom = S.Optional(S.string), 

      encoding = S.string, 

      curve = S.string, 

      pubkey = S.ecp 

   }, 

 

   -- zencode_keypair 

   keypair = S.record { 

      schema = S.Optional(S.string), 

      private = S.Optional(S.hex), 

      public = S.ecp 

   }, 

 

   -- zencode_ecqv 

   certificate = S.record { 

      schema = S.Optional(S.string), 

      private = S.Optional(S.big), 
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      public = S.ecp, 

      hash = S.big, 

      from = S.string, 

      authkey = S.ecp 

   }, 

 

   certificate_hash = S.Record { 

      schema = S.Optional(S.string), 

      public = S.ecp, 

      requester = S.string, 

      statement = S.string, 

      certifier = S.string 

   },takes 

 

   declaration = S.record { 

      schema = S.Optional(S.string), 

      from = S.string, 

      to = S.string, 

      statement = S.string, 

      public = S.ecp 

   }, 

 

   declaration_keypair = S.record { 

      schema = S.Optional(S.string), 

      requester = S.string, 

      statement = S.string, 

      public = S.ecp, 

      private = S.hex 

   } 

 

} 

2.3. Implicit Certificates 

This section will illustrate a Zencode implementation of the Elliptic Curve Qu-Vanstone 

implicit certificate scheme (ECQV) as described by the Standards for Efficient 

Cryptography 4 (SEC4, 2014). 

The ECQV implicit certificate scheme is intended as a general purpose certificate 

scheme for applications within computer and communications systems. It is 

particularly well suited for application environments where resources such as 

bandwidth, computing power and storage are limited. ECQV provides a more 

efficient alternative to traditional certificates. 

The ECQV is identifiable as a simple yet important building block within DECODE, as it 

permits the efficient creation of certificates that contain only the public reconstruction 

data instead of the subject's public key and the CA's signature, also resulting into a smaller 

payload than traditional certificates. 

ECQV relates well to those DECODE pilots in need to authenticate participants according 

to signed credentials, where the issuance of a public key is subject to the verification of 

certain conditions by a Certificate Authority (CA) capable of verifying and signing those 

conditions. This scenarios applies well to the pilot experimentations ongoing in Amsterdam 

for the DECODE project, where a certificate (and a keypair) is issued based on attributes 

that are certified by the municipal register and then used for authentication procedures 

operated by third parties and based on those attributes. 
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2.3.1. Differences with traditional certificates 

To justify the implementation and adoption of ECQV in place of traditional certificates, 

here are quickly listed three salient characteristics, closely referring to the documentation 

offered by the SEC4-1.0 document. 

With traditional certificates, when an entity U requests a traditional certificate for a public 

key, U should prove to the CA it knows the corresponding private key. This is to prevent U 

from choosing an arbitrary public key, that may already belong to another user, and have 

it certified. This situation is clearly undesirable (and may even lead to security problems). 

With implicit certificates this proof is unnecessary, as there is no public key before the 

certificate is issued. Further, U has no control over the final value of his public key, due to 

the CA's contribution, making it impossible for U to cause the confusion described above. 

Unlike traditional certificates, an implicit certificate does not contain a digital signature. In 

fact, one could simply choose an arbitrary identity I and a random value to form a 

certificate. Together with the public key of a CA, this generates a public key for the entity 

identified by I. However, if one constructs an implicit certificate in such a way, i.e., without 

interacting with the CA, it is infeasible to compute the private key that corresponds to the 

public key generated by the certificate. 

Another difference between traditional certificates and implicit certificates is that when 

presented with a valid traditional certificate, one knows that the certificate belongs to 

someone. A valid certificate containing the certificate data string IU is a proof that the CA 

signed this certificate for U , and also that U knows the private key corresponding to the 

public key included in the certificate. One does not have this guarantee with implicit 

certificates, satisfying certain privacy conditions made evident by the GDPR. 

2.3.2. Zencode Implementation 

This section will demonstrate the Zencode implementation in four steps, covering all the 

transformations into a human-readable language from the mathematical formula to the 

implementation capable of being executed in the Zenroom VM without any external 

dependency. 

The first step is the mathematical formula for ECQV as explained in the SEC4 document. 
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The second step is the implementation of this formula into the machine language 

executed by the Zenroom VM (a dialect of LUA). 

-- Zenroom 0.8.0 

-- setup 

random = RNG.new() 

order = ECP.order() 

G = ECP.generator() 

-- make a request for certification 

ku = INT.new(random, order) 

Ru = G * ku 

-- keypair for CA 

dCA = INT.new(random, order) -- private 

QCA = G * dCA       -- public (known to Alice) 

-- from here the CA has received the request 

k = INT.new(random, order) 

kG = G * k 

-- public key reconstruction data 

Pu = Ru + kG 

declaration = { public = Pu:octet(), 

                requester = str("Alice"), 

                statement = str("I am stuck in Wonderland.") } 

declhash = sha256(OCTET.serialize(declaration)) 

hash = INT.new(declhash, order) 

-- private key reconstruction data 

r = (hash * k + dCA) % order 

-- verified by the requester, receiving r,Certu 

du = (r + hash * ku) % order 

Qu = Pu * hash + QCA 

assert(Qu == G * du) 

The third step is the improvement of the previous implementation using meaningful 

variable and function names. 

-- Zenroom 0.8.1 

-- setup 

random = RNG.new() 

order = ECP.order() 

G = ECP.generator() 

-- typical EC key generation on G1 

function keygen(rng,modulo) 

   local key = INT.new(rng,modulo) 

   return { private = key, 

            public = key * G } 

end 

-- generate the certification request 

certreq = keygen(random,order) 

-- certreq.private is preserved in a safe place 

-- certreq.public is sent to the CA along with a declaration 

declaration = { requester = str("Alice"), 

                statement = str("I am stuck in Wonderland") } 

-- Requester sends to CA --> 

-- ... once upon a time ... 

-- --> CA receives from Requester 

-- keypair for CA (known to everyone as the Mad Hatter) 

CA = keygen(random,order) 

-- from here the CA has received the request 

certkey = keygen(random,order) 

-- certkey.private is sent to requester 
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-- certkey.public is broadcasted 

-- public key reconstruction data 

certpub = certreq.public + certkey.public 

-- the certification is serialized (could use ASN-1 or X509) 

certification = { public = certpub, 

                  requester = declaration.requester, 

                  statement = declaration.statement, 

                  certifier = str("Mad Hatter") } 

CERT = sha256(OCTET.serialize(certification)) 

CERThash = INT.new(CERT, order) 

-- private key reconstruction data 

certpriv = (CERThash * certkey.private + CA.private) % order 

-- CA sends to Requester certpriv and CERThash 

-- eventually CA broadcasts certpub and CERThash 

-- ... on the other side of the mirror ... 

-- Alice has received from the CA the certpriv and CERT 

-- which can be used to create a new CERTprivate key 

CERTprivate = (certpriv + CERThash * certreq.private) % order 

-- Anyone may receive the certpub and CERThash and, knowing the CA 

-- public key, can recover the same CERTpublic key from them 

CERTpublic  = certpub * CERThash + CA.public 

-- As a proof here we generate the public key in a standard way, 

-- multiplying it by the curve generator point, then check equality 

assert(CERTpublic == G * CERTprivate) 

print "Certified keypair:" 

I.print({ private = CERTprivate:octet():base64(), 

          public  =  CERTpublic:octet():base64()    }) 

At last, the implementation in Zencode follows, clearly showing the simplification made 

possible by Zenroom for the ECQV implicit certificate cryptographic scheme. Each of the 

following "scenarios" are blocks of code that can be executed independently from one 

another, taking validated input and output data structures. 

-- Zenroom 0.9 

 

Scenario 'keygen': $scenario 

    Given that I am known as 'MadHatter' 

    When I create my new keypair 

    Then print my keyring 

 

Scenario 'request': Make my declaration and request certificate 

    Given that I introduce myself as 'Alice' 

    and I have the 'public' key 'MadHatter' in keyring 

    When I declare to 'MadHatter' that I am 'lost in Wonderland' 

    and I issue my implicit certificate request 'declaration' 

    Then print all data 

 

Scenario 'keygen': $scenario 

    Given that I am known as 'Alice' 

    and I have a 'declaration_public' 'from' 'Alice' 

    Then print data 'declaration_public' 

 

Scenario 'keygen': $scenario 

    Given that I am known as 'Alice' 

    and I have a 'declaration_keypair' 

    Then print data 'declaration_keypair' 

 

Scenario 'issue': Receive a declaration request and issue a certificate 

    Given that I am known as 'MadHatter' 

    and I have a 'declaration_public' 'from' 'Alice' 
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    and I have my 'private' key in keyring 

    When I issue an implicit certificate for 'declaration_public' 

    Then print all data 

 

Scenario 'split': Print the public section of the certificate 

    Given I have a 'certificate_public' 'from' 'MadHatter' 

    When possible 

    Then print data 'certificate_public' 

 

Scenario 'split': Print the private section of the certificate 

    Given I have a 'certificate_private' 

    When possible 

    Then print data 'certificate_private' 

 

Scenario 'save': Receive a certificate of a declaration and save it 

    Given I have a 'certificate_private' 'from' 'MadHatter' 

    and I have the 'private' key 'declaration_keypair' in keyring 

    When I verify the implicit certificate 'certificate_private' 

    Then I print data 'declaration' 

 

Scenario 'keygen': $scenario 

    Given that I am known as 'Bob' 

    When I create my new keypair 

    Then print my keyring 

 

Scenario 'challenge': Receive a certificate of a declaration and use it to encrypt a message 

    Given that I am known as 'Bob' 

    and I have my 'private' key in keyring 

    and that 'Alice' declares to be 'lost in Wonderland' 

    and I have a 'certificate' 'from' 'MadHatter' 

    When I draft the text 'Hey Alice! can you read me?' 

    and I use 'certificate' key to encrypt the text into 'ciphertext' 

    Then I print data 'ciphertext' 

 

Scenario 'respond': Alice receives an encrypted message, decrypts it and sends an encrypted answer back to sender 

    Given that I am known as 'Alice' 

    and I have my 'private' key in keyring 

    When I decrypt the 'ciphertext' to 'decoded' 

    and I use 'certificate' key to encrypt 'decoded' into 'answer' 

    Then I print data 'answer' 

The Zencode language is a DSL enforcing a strong declarative behavior underneath and 

all base data structures are checked against a validation scheme upon input and output. 

The checks are also of cryptographic nature, for instance public keys are checked to 

make sure they are actual points on the elliptic curve in use. Here below the data 

validation schemes so far in use: 

_G['schemas'] = { 

 

   -- packets encoded with AES GCM 

   AES-GCM = S.record { 

      checksum = S.hex, 

      iv = S.hex, 

      schema = S.Optional(S.string), 

      text = S.hex, 

      zenroom = S.Optional(S.string), 

      encoding = S.string, 

      curve = S.string, 

      pubkey = S.ecp 

   }, 
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   -- zencode_keypair 

   keypair = S.record { 

      schema = S.Optional(S.string), 

      private = S.Optional(S.hex), 

      public = S.ecp 

   }, 

   -- zencode_ecqv 

   certificate = S.record { 

      schema = S.Optional(S.string), 

      private = S.Optional(S.big), 

      public = S.ecp, 

      hash = S.big, 

      from = S.string, 

      authkey = S.ecp 

   }, 

   certificate_hash = S.Record { 

      schema = S.Optional(S.string), 

      public = S.ecp, 

      requester = S.string, 

      statement = S.string, 

      certifier = S.string 

   }, 

   declaration = S.record { 

      schema = S.Optional(S.string), 

      from = S.string, 

      to = S.string, 

      statement = S.string, 

      public = S.ecp 

   }, 

   declaration_keypair = S.record { 

      schema = S.Optional(S.string), 

      requester = S.string, 

      statement = S.string, 

      public = S.ecp, 

      private = S.hex 

   } 

} 

2.3.3. Blind-signed attribute credentials 

The ECQV Zencode implementation described in the previous chapter has offered an 

important occasion to refine our language by modeling it to serve a well tested and fairly 

complex cryptographic sceme. It has however strong limits for the work envisioned in 

DECODE pilots and especially with regards to the "Privacy by Design" (Colesky et al., 2016; 

Danezis et al., 2015; Hoepman, 2014) recommendations we are ought to follow. To 

summarize ECQV limits: 

 The use of certifications is traceable as crypto-materials aren't blinded and can be 

individuated across communication logs (or a ledger in case of adoption of DLTs) 

 Two-way communication needs to take place for every single step: between the 

requester and the issuer, as well between the verifier and the requester. 

 Especially when executed in a remotely networked situation, the certification 

scheme is prone to man-in-the-middle attacks (Adrian et al., 2015) 

To overcome these and other limits of cryptographic implementations typically based on 

Diffie-Hellman keypairs, this document moves forward with the implementation of a 

"Threshold Issuance Selective Disclosure Credentials" system named Coconut (Sonnino et 
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al., 2018) and developed by colleagues at UCL to specifically address the 

challenges posed by the development of a open blockchain in the scenarios outlined by 

DECODE's pilots. 

Coconut offers several advantages for our use-cases: 

 it allows for multiple certificate authorities to sign credentials. 

 it provides blind-signature verifications for both issued and proven credentials, 

ready for use on a DLT. 

 it relatively small sized keys and credentials, even when several authorities are 

involved. 

 it provides optional support for threshold based credential validation which will be 

especially useful when DECODE is deployed on an open blockchain. 

2.3.4. Coconut Implementation 

The implementation of Coconut requires PAIR EC crypto operations (and in particular the 

"Miller Loop" on twisted curve space) for which we specifically adopt the BLS3833 curve 

proposed by Milagro's developers for these kinds of operations. Other PAIRING capable 

curves will work as well, but have not been tested. 

 

local g1 = ECP.generator() 

local g2 = ECP2.generator() 

local o  = ECP.order() 

-- stateful challenge hardcoded string 

local hs = ECP.hashtopoint(str([[ 

Developed for the DECODE project 

]] .. coco._LICENSE)) 

local challenge = g1:octet() .. g2:octet() .. hs:octet() 

-- random generator init 

local random = RNG.new() 

local function rand() return INT.new(random,o) end 

-- El-Gamal cryptosystem 

function coco.elgamal_keygen() 

   local d = rand() 

   local gamma = d * g1 

   return d, gamma 

end 

function coco.elgamal_enc(gamma, m, h) 

   local k = rand() 

   local a = k * g1 

   local b = gamma * k + h * m 

                       

3 There is no academic documentation on the BLS383 curve yet, its integrity is tested empirically across the 

various implementations of the Milagro crypto library. 
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   return a, b, k 

end 

function coco.elgamal_dec(d, a, b) 

   return b - a * d 

end 

-- local zero-knowledge proof verifications 

local function to_challenge(list) 

   return INT.new( sha256( challenge .. OCTET.serialize(list))) 

end 

local function make_pi_s(gamma, cm, k, r, m) 

   local h = ECP.hashtopoint(cm) 

   local wk = rand() 

   local wm = rand() 

   local wr = rand() 

   local Aw = g1 * wk 

   local Bw = gamma * wk + h * wm 

   local Cw = g1 * wr + hs * wm 

   local c = to_challenge({ cm, h, Aw, Bw, Cw }) 

   local rk = wk:modsub(c * k, o) 

   local rm = wm:modsub(c * m, o) 

   local rr = wr:modsub(c * r, o) 

   return {  c  = c, 

  rk = rk, 

  rm = rm, 

  rr = rr } 

end 

function coco.verify_pi_s(gamma, ciphertext, cm, proof) 

   local h = ECP.hashtopoint(cm) 

   local a = ciphertext.a 

   local b = ciphertext.b 

   local c = proof.c 

   local rk = proof.rk 

   local rm = proof.rm 

   local rr = proof.rr 

   local Aw = a * c + g1 * rk 

   local Bw = b * c + gamma * rk + h * rm 

   local Cw = cm * c + g1 * rr + hs * rm 

   return c == to_challenge({ cm, h, Aw, Bw, Cw }) 

end 

local function make_pi_v(vk, sigma_prime, m, r) 

   local wm = rand() 

   local wr = rand() 

   local Aw = g2 * wr + vk.alpha + vk.beta * wm 

   local Bw = sigma_prime.h_prime * wr 

   local c = to_challenge({ vk.alpha, vk.beta, Aw, Bw }) 

   local rm = wm:modsub(m * c, o) 

   local rr = wr:modsub(r * c, o) 

   return { c = c, rm = rm, rr = rr } 

end 

local function verify_pi_v(vk, kappa, nu, sigma_prime, proof) 

   local c = proof.c 

   local rm = proof.rm 

   local rr = proof.rr 

   local Aw = kappa * c + g2 * rr + vk.alpha * INT.new(1):modsub(c,o) + vk.beta * rm 

   local Bw = nu * c + sigma_prime.h_prime * rr 
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   return c == to_challenge({ vk.alpha, vk.beta, Aw, Bw }) 

end 

-- Public Coconut API 

function coco.ca_keygen() 

   local x = rand() 

   local y = rand() 

   local sk = { x = x, 

                y = y  } 

   local vk = { g2 = g2, 

                alpha = g2 * x, 

                beta  = g2 * y  } 

   -- return keypair 

   return { sign = sk, 

            verify = vk } 

end 

function coco.cred_keygen() 

   local d, gamma = ELGAMAL.keygen() 

   return { private = d, 

   public  = gamma } 

end 

function coco.prepare_blind_sign(gamma, secret) 

   local m = INT.new(sha256(str(secret))) 

   local r = rand() 

   local cm = g1 * r + hs * m 

   local h = ECP.hashtopoint(cm) 

   local a, b, k = ELGAMAL.encrypt(gamma, m, h) 

   local c = {a = a, b = b} 

   local pi_s = make_pi_s(gamma, cm, k, r, m) 

   -- return Lambda 

   return { cm   = cm, 

            c    = c, 

            pi_s = pi_s } 

end 

function coco.blind_sign(sk, gamma, Lambda) 

 local ret = coco.verify_pi_s(gamma, Lambda.c, Lambda.cm, Lambda.pi_s) 

 assert(ret == true, 'Proof pi_s does not verify') 

 local h = ECP.hashtopoint(Lambda.cm) 

 local a_tilde = Lambda.c.a * sk.y 

 local b_tilde = h * sk.x + Lambda.c.b * sk.y 

 return { h = h, 

            a_tilde = a_tilde, 

           b_tilde = b_tilde  } 

end 

function coco.aggregate_creds(d, sigma_tilde) 

   local agg_s = ELGAMAL.decrypt(d, sigma_tilde[1].a_tilde, sigma_tilde[1].b_tilde) 

   if #sigma_tilde > 1 then 

      for i = 2, #sigma_tilde do 

         agg_s = agg_s + ELGAMAL.decrypt(d, sigma_tilde[i].a_tilde, sigma_tilde[i].b_tilde) 

      end 

   end 

   return { h = sigma_tilde[1].h, 

            s = agg_s } 

end 

function coco.prove_creds(vk, sigma, secret) 

   local m = INT.new(sha256(str(secret))) 
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   local r = rand() 

   local r_prime = rand() 

   local sigma_prime = { h_prime = sigma.h * r_prime, 

                         s_prime = sigma.s * r_prime  } 

   local kappa = vk.alpha + vk.beta * m + vk.g2 * r 

   local nu = sigma_prime.h_prime * r 

   local pi_v = make_pi_v(vk, sigma_prime, m, r) 

   -- return Theta 

   local Theta = { 

      kappa = kappa, 

      nu = nu, 

      sigma_prime = sigma_prime, 

      pi_v = pi_v } 

   return Theta 

end 

function coco.verify_creds(vk, Theta) 

   local ret = verify_pi_v(vk, Theta.kappa, Theta.nu, Theta.sigma_prime, Theta.pi_v) 

   assert(ret == true, 'Proof pi_v does not verify') -- verify zero knowledge proof 

   local ret1 = not Theta.sigma_prime.h_prime:isinf() 

   local ret2 = ECP2.miller(Theta.kappa, Theta.sigma_prime.h_prime) 

   == ECP2.miller(vk.g2, Theta.sigma_prime.s_prime + Theta.nu) 

   return ret1 and ret2 

end 

The data formats used in Coconut are validated by Zencode (not by this Lua underlying 

implementation) and defined using the same names used in the Coconut paper as 

follows: 

   coconut_ca_vk = S.record { 

      g2 = S.hex, 

      alpha = S.hex, 

      beta = S.hex 

   }, 

   coconut_ca_sk = S.record { 

      x = S.int, 

      y = S.int 

   }, 

   coconut_ca_keypair = S.record { 

      schema = S.Optional(S.string), 

      version = S.Optional(S.string), 

      verify = S.table, 

      sign = S.table 

   }, 

   coconut_req_keypair = S.record { 

      schema = S.Optional(S.string), 

      version = S.Optional(S.string), 

      public = S.ecp, 

      private = S.hex 

   }, 

   coconut_pi_s = S.record { 

   rr = S.int, 

   rm = S.int, 

   rk = S.int, 

   c = S.int 

   }, 
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   coconut_sigmatilde = S.record { 

      schema = S.Optional(S.string), 

      version = S.Optional(S.string), 

      h = S.ecp, 

      b_tilde = S.ecp, 

      a_tilde = S.ecp 

   }, 

   coconut_aggsigma = S.record { 

   schema = S.Optional(S.string), 

   version = S.Optional(S.string), 

   h = S.ecp, 

   s = S.ecp 

   } 

} 

This implementation is fully covered by tests and following lab-tests has been proven to 

work reliably. It is probably the most advanced implementation of a cryptographic 

scheme in Zenroom and as such has been taken as an important reference to define the 

the Zencode language, which is illustrated in the following chapter.   
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3. Evaluation of prototypes 

In order to better explain the potential offered by the Zencode Domain Specific 

Language (DSL) to DECODE's prototypes its important to understand the versatility of its 

usage. Approaches may change on a domain-specific basis and its possible to tailor and 

simplify usage on the specific context it applies to. 

As we are on the quest to merge the description of an algorithm with its executive 

expression we get close to the concept of a speech act that refers to a specific context 

and adopts a limited taxonomy which may or may not be inscribed in a larger ontology. 

It is very important to understand that the boxes in the flow diagrams shown contain 

actual Zencode meaning that is not just a description, but is source-code that is 

interpreted and executed by the Zenroom VM to accomplish the tasks described. It is then 

the main way to faithfully describe what the prototype does internally with the data: each 

of the prototypes built in DECODE can simply visualize the Zencode that is running to 

inform any operator of what is going on. 

This solution has been realized after trying many different approaches involving visual 

programming and block programming, which were perhaps richer visually, but less 

integrated and in general consisting of a way to represent code rather than code itself. 

The final Zencode solution is also simplier to implement for prototyped host applications. 

At the time of writing our explanation can be based on an extended experimentation of 

in-vitro usage (lab tests) and a limited experimentation of in-vivo usage mostly bound to 

the conceptualization of use-cases in the IoT pilot and the Amsterdam's register pilot. In 

order to extend the coverage of Zencode to more pilots, we need to have a completed 

implementation of the underlying cryptographic contract, in this case the petition. 

What follows is a brief visualisation of what is realised so far. In particular the first 

visualisation below refers to the implementation of an asymmetric cryptographic 

exchange in the fashion of the PGP implementation, based on an exchange of 

pulic/private keys and their collection into a keyring: 
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This simplified flow diagram shows actual Zencode that can be executed, higlighting 

variables that are normally just surrounded by single quotes. Between each code block, 

which is executed asynchronously as required and at different times, there is a schema 

which indicates the shape of data in output. 

What follows is another flow diagram leading to data outputs that can be reused into the 

above: is the use of ECQV implicit certificates via Zencode, which leads to obtaining 

public/private keypairs that are compatible with asymmetric encryption. 
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At last, below is a diagram showing again the code and the data-structures of the 

credential authentication mechanism implemented following the Coconut paper 

(Sonnino et al., 2018) and illustrating the flow of request, issue and publication of 

credentials outlined in this graph: 
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And realised in Zencode language format as illustrated by the following figure: 
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3.1. Implementations 

At the time of writing all functional prototypes in DECODE are embedding Zenroom and 

can therefore seamlessly implement Zencode without adding more work to implementors, 

but simply substituting the current Lua based Zenroom scripts to their Zencode 

implementation. Below a list ofsoftware prototypes also visible at 

https://github.com/decodeproject 

 Mobile app (Zenroom embedded as a react-native javascript component, soon to 

be converted to native https://github.com/DECODEproject/wallet 

 IoT encoder (Zenroom embedded via Go bindings) 

https://github.com/DECODEproject/iotencoder 

 Chainspace (Zenroom binary executed separately) https://chainspace.io 

All DECODE pilots benefit from this development which is successfully integrated through 

these components. The DECIDIM pilot still needs a working cryptographic implementation 

of its petition contract in order to be translated to Zencode; the IoT based pilots can all 

immediately benefit from the Zencode implementation of DH asymmetric encryption 

based on AES-GCM secure standard; the Amsterdam register pilot can immediately 

benefit from the Zencode implementation of ECQV implicit certificates. 

Future horizons of development of Zencode include further implementations supporting 

interoperable and extensible crypto schemes on the same EC curve that can still work 

with the above implementations, as well further refinement of the parser and extension of 

the schema validation. From this point onwards Zencode must be informed by piloting, 

while it will be also refined in cooperation with legal experts to match the smart-rule 

statements so far identified to express consensual data processing conditions.  

https://github.com/decodeproject
https://github.com/DECODEproject/wallet
https://github.com/DECODEproject/iotencoder
https://chainspace.io/
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4. Integration 

The integration of Zencode is so far relying on the same integration schemes present for 

Zenroom, with the addition of a minimal layer of boilerplate code for its execution. This is 

so to facilitate flexibility in piloting, but will be later changed to lock down to the sole 

execution of Zencode via new specific API calls. 

Therefore, for now, in addition to the C call that we have exported to Java, Go, Python 

and Javascript languages along with utility wrappers: 

int zenroom_exec(char *script, char *conf, char *keys, 

                 char *data, int verbosity); 

We also have the boilerplate internal to the 'script' buffer: 

verbosity_level = 1 

ZEN:begin(verbosity_level) 

ZEN:parse([[ 

-- your zencode here 

]]) 

ZEN:run() 

The execution of actual Zencode lines happens sequentially at the time of the 'ZEN:run()' 

call. Each line as part of the whole statement block (utterance) makes use of data types 

which may or may be validated and should be present in the KEYS and DATA buffers. A list 

of Zenroom/Zencode integrated implementations follow: they have been developed in 

relation to each pilot software implementation as needed, covering several languages. 

 Go language bindings https://github.com/DECODEproject/zenroom-go 

 Python language bindings https://github.com/DECODEproject/zenroom-py 

 Java (JNI) and SWIG (universal) language bindings are inside Zenroom's source 

repository https://github.com/DECODEproject/zenroom 

Also notable the presence of the 'zenroom' module inside the NodeJS Package Manager 

collection (NPM) and of course its extremely portable WebAssembly optimized build 

(universal binary) see: https://www.npmjs.com/package/zenroom 

As well the packaging of a Docker container: 

https://hub.docker.com/r/dyne/zenroom 

Even considering the work ahead to integrate needs of pilots into cryptographic contracts 

that need to be translated to Zenroom and then wrapped into Zencode, it is evident that 

the way we engineered the Zenroom VM and the Zencode DSL will make it easy to 

integrate it in new applications. 

  

https://github.com/DECODEproject/zenroom-go
https://github.com/DECODEproject/zenroom-py
https://github.com/DECODEproject/zenroom
https://www.npmjs.com/package/zenroom
https://hub.docker.com/r/dyne/zenroom
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