

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 0 evalutation of prototypes and

 integration

Smart Rules implementation,

Evaluation of Prototypes and

integration

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 1 evalutation of prototypes and

 integration

Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

D3.6. Smart Rules implementation, Evaluation of Prototypes and integration

Version Number: V1.0

Lead beneficiary: Dyne.org

Due Date: December 31st, 2018

Author(s): Denis Roio, Puria Nafisi Azizi (Dyne.org)

Editors and reviewers: Oleguer Sagarra (IMI), Marco Ciurcina (NEXA), Alberto Sonnino

(UCL)

Dissemination level:

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission

Services)

CO Confidential, only for members of the consortium (including the Commission

Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer,

Barcelona City Hall)

Date: 31/01/2019

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 2 evalutation of prototypes and

 integration

Table of contents

1. Introduction .. 3

1.1. For the awareness of algorithms .. 3

2. Implementation ... 5

2.1. Behaviour Driven Development ... 5

2.2. Declarative Schema Validation ... 7

2.3. Implicit Certificates ... 9

2.3.1. Differences with traditional certificates .. 10

2.3.2. Zencode Implementation .. 10

2.3.3. Blind-signed attribute credentials ... 14

2.3.4. Coconut Implementation .. 15

3. Evaluation of prototypes .. 20

3.1. Implementations ... 25

4. Integration .. 26

5. Bibliography ... 27

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 3 evalutation of prototypes and

 integration

1. Introduction

This deliverable consists of the implementation of smart-rules effectively executing

cryptographic operation and data transformations using a human readable language

modeled according to a taxonomy of subjects and predicates found in the pilot

applications. It delivers a technology that brings together expression and execution into

utterances based on translatable human language phrases. This technology is a simple,

non-touring complete natural language interpreter (Zencode) based on a domain

specific language (DSL) that can run and execute inside a very portable virtual machine

(Zenroom) capable of cryptographic transformations.

Since DECODE project's inception, reaching this point of development has been an

extremely motivating ambition, as it also serves an important solution for the techno-

political implications illustrated by the AlgoSov.eu observatory and the recently published

Ph..D thesis "Algorithmic Sovereignty" (Roio, 2018).

1.1. For the awareness of algorithms

The goal of this task is ultimately that of realizing a simple, non-technical, human-readable

language for smart-rules that are actually executed in a verifiable and provable manner

within the Zenroom controlled execution environment.

To articulate the importance of this quest and the relevance of the results presented,

which I believe to be unique in the landscape of blockchain smart-contract languages, is

important to remind us of the condition in which most people find themselves when

participating in the regime of truth that is built by algorithms.

As the demand and production of well-connected vessels for the digital dimension has

boomed, machine-readable code today functions as a literature informing the

architecture in which human interactions happens and decisions are taken. The telematic

condition is realised by an integrated datawork continuously engaging the observer as a

participant. Such a "Gesamtdatenwerk" (Ascott, 1990) may seem an abstract

architecture, yet it can be deeply binding under legal, ethical and moral circumstances.

The comprehension of algorithms, the awareness of the way decisions are formulated, the

implications of their execution, is not just a technical condition, but a political one, for

which access to information cannot be just considered a feature, but a civil right (Pelizza

and Kuhlmann, 2017). It is important to understand this in relation to the "classical"

application of algorithms executed in a centralized manner, but even more in relation to

distributed computing scenarios posed by blockchain technologies, which theorize a

future in which rules and contracts are executed irrevocably and without requiring any

human agency.

The legal implications with regards to standing rights and liabilities are out of the scope

here, while the focus is on ways humans, even when lacking technical literacy, can be

made aware of what an algorithm does. Is it possible to establish the ground for a shared

language that informs digital architects about their choices and inhabitants about the

digital territory? Going past assumptions about the strong role algorithms have in

governance and accountability (Diakopoulos, 2016), how can we inform digital citizens

about their condition?

https://algosov.eu/

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 4 evalutation of prototypes and

 integration

When describing the virtualisation of economic activity in the global context,

Saskia Sassen describes the need we are observing as that of an analytical vocabulary:

The third component in the new geography of power is the growing importance of

electronic space. There is much to be said on this issue. Here, I can isolate one

particular matter: the distinctive challenge that the virtualization of a growing

number of economic activities presents not only to the existing state regulatory

apparatus, but also to private-sector institutions increasingly dependent on the new

technologies. Taken to its extreme, this may signal a control crisis in the making, one

for which we lack an analytical vocabulary.(Sassen, 1996)

The analysis of legal texts and regulations here shifts into an entirely new domain; it has to

refer to conditions that only algorithms can help build or destroy. Thus, referring to this

theoretical framework, the research and development of a free and open source

language that is intellegible to humans becomes of crucial importance and, from an

ethical standing point, DECODE as many other projects in the same space cannot be

exempted from addressing it.

When we consider algorithms as contracts regulating relationships (between humans,

between humans and nature and, nowadays more increasingly, between different

contexts of nature itself) then we should adopt a representation that is close to how the

human mind works and that is directly connected to the language adopted. Since

algorithms are the systemic product of complex relationships between contracts and

relevant choices made by standing actors (Monico, 2014), the ability to verify which

algorithms are in place for a certain result to be visualised becomes very important and

should be embedded in every application: to understand and communicate what

algorithms and to describe and experiment their repercussions on reality.

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 5 evalutation of prototypes and

 integration

2. Implementation

This section describes the salient implementation details of the Zencode DSL, the smart-

rule language for DECODE, tailored on its use-cases and based on the Zenroom controlled

execution environment (VM). Implementation details refer only to Zencode and not to

how Zenroom is implemented, since the latter is already covered in other documents.

The implementation section contains three parts explaining:

 the language model inherited by Behaviour Driven Development

 the data validation model based on Schema Validation

 the implementation of implicit certificates

2.1. Behaviour Driven Development

In Behaviour Driven Development (BDD), the important role of software integration and

unit tests is extended to serve both the purposes of designing the human-machine

interaction flow (user journey in UX terms) and of laying down a common ground for

interaction between designers and stakeholders. In this Agile software development

methodology the software testing suite is based on natural language units that grant a

common understanding for all participants and observers.

To implement BDD the first step is that of mapping a series of interconnected cascading

sentences to actual source code; this implementation is usually done manually by

programmers that have knowledge of the higher level application protocol interface (API)

that grants communication between the backend and the frontend of a software

application. The BDD implementation can then be seen as an alternative frontend whose

purpose is that of lowering the distance between expression and execution by means of

utterances expressed in human language.

Far from giving an exhaustive description of BDD implementations and characteristics, this

brief chapter intends to summarise the features of this approach where they specifically

apply to the development goals of Zencode (previously stated) and the solution provided.

Referring to the Cucumber implementation of BDD, arguably the most popular in use by

the industry to day and factual standard (Wynne, 2012), the grammar of utterances is very

simple and definable as a "cascading" flow indeed, since the fixed sequence of lines can

follow only one fixed order:

Given .. and* .. When .. and* .. Then print ..

This sequence is fixed and in simple terms consists of:

1. an extendable initialisation of states "Given (and)"

2. followed by an extendable transformation of states "When (and)"

3. concluded by returning the final states "Then print".

The Zenroom implementation is kept simple at this stage and does not takes any "fuzzy"

approach to the parsing, but simply defines fixed sequences of strings and variables that

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 6 evalutation of prototypes and

 integration

are expected to occur within them: the variables are what is ultimately

possible to change by users and are marked by a repeating sequence of two adjacent

single quotes (' ').

The underlying parser acts upon a positive, unique and so far non-flexible match of the

whole phrase minus the variables, then executes a function that takes as many arguments

as the variables present in the lines across the utterance. As a result, every single non-

repeating line of the utterance has a declared function that interacts with the underlying

implementation of Zenroom, whose actions are defined in its LUA subset language.

Brief examples of this implementation follow:

Given("I introduce myself as ''", function(name) whoami = name end)

Given("I am known as ''", function(name) whoami = name end)

The above definition of two lines possibly occurring within the utterances in Zencode are

demonstrating how a state "who am I" basically my own name can be set using two

different phrases, leading to the execution of the same function which basically operates

a simple assignment to the variable whoami. This simple demonstration is a hint to the fact

that multiple patterns can be defined also in different ways, making the Zencode DSL

implementation very easy to translate across different spoken languages as well

contextualised within specific idiolects adopted by humans.

Furthermore, another example of implementation:

Given("that '' declares to be ''",function(who, decl)

 -- declaration

 if not declared then declared = decl

 else declared = declared .." and ".. decl end

 whois = who

end)

Given("declares also to be ''", function(decl)

 ZEN.assert(who ~= "", "The subject making the declaration is unknown")

 -- declaration

 if not declared then declared = decl

 else declared = declared .." and ".. decl end

end)

Shows how is possible to accept multiple variables and process them through more

complex transformations that also contemplate the concatenation of contents to

previous states. States are in fact permanent within the scope of the execution of a single

utterance and will be modified in the same deterministic order by which they are

expressed across lines. What is also visible within this example implementation, which we

intend to facilitate by customisation made by people who have a simple knowledge of

Zenroom's API and LUA scripting, is that the 'ZEN.' namespace makes available a number

of utility functions to easily check states (asserts) and propagate meaningful error

messages that are then part of a backtrace output given to the calling application (host)

on occurrence of an error.

The full implementation of Zencode available at the time of publishing this document is

inside the source-code files 'zenroom/src/lua/zencode_*' and is relatively easy to maintain

for the pilots analysed in our project, as well easy to extend to more use-cases. The current

implementation addresses specific schemes that useful to the pilots in DECODE, while

contemplating future extension:

 Simple symmetric encryption of ciphertext by means of a PIN and KDF transformations

(pilot: Amsterdam Register)

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 7 evalutation of prototypes and

 integration

 Diffie-Hellman asymmetric key encryption (AES-GCM) (pilot: Making

Sense IoT)

 Blind-sign credentials for unlinkable selective attribute revelations1 (pilot: DECIDIM and

Gebied Online)

 In addition there is also the implementation of an "implicit certificate" crypto scheme

(Qu-Vanstone, ECQV) that is limited to first order curve transformations, which may

apply to pilots requiring simple certification schemes2.

All the implementations are illustrated in more detail in the following chapters.

2.2. Declarative Schema Validation

In order to make the processing of Zencode more robust, all data used as input and

output for its computations is validated according to predefined schemas. This makes the

Zencode DSL a declarative language in which data recognition is operated before

processing.

The data schemas are added on a per-usecase basis: they refer to specific cryptographic

implementations as they are added in Zencode. Careful evaluation regarding their

addition is made to realise if old schemas can be extended to include new requirements.

Schemas are expressed in a simple format using Lua scripting syntax, for example:

-- zencode_keypair

keypair = S.record {

 schema = S.Optional(S.string),

 private = S.Optional(S.hex),

 public = S.ecp

}

The schema above is the smallest and most commonly used one, composed by one

required field and two optional ones, used to validate the input and output of

public/private keypairs to be used in transformations.

The only required field in the schema is the 'public' key which is validated using the 'ECP'

type ('S.' is an abbreviation for the 'SCHEMA.' namespace). The validation of 'S.ECP' is an

actual cryptographic validation: Zenroom will check that the big integer number

represented by the field corresponds to a valid point on the curve. In case the validation is

not passed, the execution of the Zencode script will not take place and Zenroom will

return a meaningful error message indicating the wrong field.

The other optional field is the 'private' key which can correspond to any sequence of

values, therefore no cryptographic validation is possible for it; in this case then the

validation used is one that refers to the encoding of the field: 'S.hex' is verifying that the

value is encoded with a sequence of characters that express only hexadecimal numbers

1 This implementation refers to work on the Coconut credential system (Sonnino et. al, 2018) designed after

specific needs in DECODE's pilots. It does not implement, however, the threshold issuance part, which is only

required in the scenario of a fully open blockchain implementation, which is still work in progress.

2 It is important to note that while the ECQV scheme was not examined by other partners in our project, it has

been choosen for its stable role in the industry and for its augmented complexity within an approachable

implementation, complexity which could better inform the Zencode implementation.

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 8 evalutation of prototypes and

 integration

(that is, 0..9 numbers and case-insensitive letters from A to Z). Other encoding

tests are also available, for instance 'S.base64' if that is the encoding used in the specific

implementation.

Another more complex example follows:

-- packets encoded with AES GCM

AES-GCM = S.record {

 checksum = S.hex,

 iv = S.hex,

 schema = S.Optional(S.string),

 text = S.hex,

 zenroom = S.Optional(S.string),

 encoding = S.string,

 curve = S.string,

 pubkey = S.ecp

}

In this example no new validations are being used and in fact it just adds fields compared

to the previous: it defines a portable packet of ciphertext data that is returned as output

of AES-GCM asymmetric encryption as well is accepted as input to AES-GCM decryption.

A similarity between these two examples is evident: the presence of the 'schema' field. This

field is a sort of "introspective" indication matching the data structure to its schema

specification. If this field is not present (as it is always optional) then no validation on the

data structure will take place, meaning the Zencode implementation leaves the risk (and

hopefully the validation task) to the host.

This chapter ends with the current implementation of schema validation data types that

are currently implemented for symmetric and asymmetric encryption of ciphertexts as well

for implicit certificates. The schema implementation for Zencode is maintained into the

sourcecode within the source file 'src/lua/zencode_schemas.lua' and can be accessed

by the function 'ZEN.validate(data,'schema','error')' which is a wrapper of

'ZEN.assert(validate(data,schemas['schema']),'error')'.

_G['schemas'] = {

 -- packets encoded with AES GCM

 AES-GCM = S.record {

 checksum = S.hex,

 iv = S.hex,

 schema = S.Optional(S.string),

 text = S.hex,

 zenroom = S.Optional(S.string),

 encoding = S.string,

 curve = S.string,

 pubkey = S.ecp

 },

 -- zencode_keypair

 keypair = S.record {

 schema = S.Optional(S.string),

 private = S.Optional(S.hex),

 public = S.ecp

 },

 -- zencode_ecqv

 certificate = S.record {

 schema = S.Optional(S.string),

 private = S.Optional(S.big),

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 9 evalutation of prototypes and

 integration

 public = S.ecp,

 hash = S.big,

 from = S.string,

 authkey = S.ecp

 },

 certificate_hash = S.Record {

 schema = S.Optional(S.string),

 public = S.ecp,

 requester = S.string,

 statement = S.string,

 certifier = S.string

 },takes

 declaration = S.record {

 schema = S.Optional(S.string),

 from = S.string,

 to = S.string,

 statement = S.string,

 public = S.ecp

 },

 declaration_keypair = S.record {

 schema = S.Optional(S.string),

 requester = S.string,

 statement = S.string,

 public = S.ecp,

 private = S.hex

 }

}

2.3. Implicit Certificates

This section will illustrate a Zencode implementation of the Elliptic Curve Qu-Vanstone

implicit certificate scheme (ECQV) as described by the Standards for Efficient

Cryptography 4 (SEC4, 2014).

The ECQV implicit certificate scheme is intended as a general purpose certificate

scheme for applications within computer and communications systems. It is

particularly well suited for application environments where resources such as

bandwidth, computing power and storage are limited. ECQV provides a more

efficient alternative to traditional certificates.

The ECQV is identifiable as a simple yet important building block within DECODE, as it

permits the efficient creation of certificates that contain only the public reconstruction

data instead of the subject's public key and the CA's signature, also resulting into a smaller

payload than traditional certificates.

ECQV relates well to those DECODE pilots in need to authenticate participants according

to signed credentials, where the issuance of a public key is subject to the verification of

certain conditions by a Certificate Authority (CA) capable of verifying and signing those

conditions. This scenarios applies well to the pilot experimentations ongoing in Amsterdam

for the DECODE project, where a certificate (and a keypair) is issued based on attributes

that are certified by the municipal register and then used for authentication procedures

operated by third parties and based on those attributes.

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 10 evalutation of prototypes and

 integration

2.3.1. Differences with traditional certificates

To justify the implementation and adoption of ECQV in place of traditional certificates,

here are quickly listed three salient characteristics, closely referring to the documentation

offered by the SEC4-1.0 document.

With traditional certificates, when an entity U requests a traditional certificate for a public

key, U should prove to the CA it knows the corresponding private key. This is to prevent U

from choosing an arbitrary public key, that may already belong to another user, and have

it certified. This situation is clearly undesirable (and may even lead to security problems).

With implicit certificates this proof is unnecessary, as there is no public key before the

certificate is issued. Further, U has no control over the final value of his public key, due to

the CA's contribution, making it impossible for U to cause the confusion described above.

Unlike traditional certificates, an implicit certificate does not contain a digital signature. In

fact, one could simply choose an arbitrary identity I and a random value to form a

certificate. Together with the public key of a CA, this generates a public key for the entity

identified by I. However, if one constructs an implicit certificate in such a way, i.e., without

interacting with the CA, it is infeasible to compute the private key that corresponds to the

public key generated by the certificate.

Another difference between traditional certificates and implicit certificates is that when

presented with a valid traditional certificate, one knows that the certificate belongs to

someone. A valid certificate containing the certificate data string IU is a proof that the CA

signed this certificate for U , and also that U knows the private key corresponding to the

public key included in the certificate. One does not have this guarantee with implicit

certificates, satisfying certain privacy conditions made evident by the GDPR.

2.3.2. Zencode Implementation

This section will demonstrate the Zencode implementation in four steps, covering all the

transformations into a human-readable language from the mathematical formula to the

implementation capable of being executed in the Zenroom VM without any external

dependency.

The first step is the mathematical formula for ECQV as explained in the SEC4 document.

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 11 evalutation of prototypes and

 integration

The second step is the implementation of this formula into the machine language

executed by the Zenroom VM (a dialect of LUA).

-- Zenroom 0.8.0

-- setup

random = RNG.new()

order = ECP.order()

G = ECP.generator()

-- make a request for certification

ku = INT.new(random, order)

Ru = G * ku

-- keypair for CA

dCA = INT.new(random, order) -- private

QCA = G * dCA -- public (known to Alice)

-- from here the CA has received the request

k = INT.new(random, order)

kG = G * k

-- public key reconstruction data

Pu = Ru + kG

declaration = { public = Pu:octet(),

 requester = str("Alice"),

 statement = str("I am stuck in Wonderland.") }

declhash = sha256(OCTET.serialize(declaration))

hash = INT.new(declhash, order)

-- private key reconstruction data

r = (hash * k + dCA) % order

-- verified by the requester, receiving r,Certu

du = (r + hash * ku) % order

Qu = Pu * hash + QCA

assert(Qu == G * du)

The third step is the improvement of the previous implementation using meaningful

variable and function names.

-- Zenroom 0.8.1

-- setup

random = RNG.new()

order = ECP.order()

G = ECP.generator()

-- typical EC key generation on G1

function keygen(rng,modulo)

 local key = INT.new(rng,modulo)

 return { private = key,

 public = key * G }

end

-- generate the certification request

certreq = keygen(random,order)

-- certreq.private is preserved in a safe place

-- certreq.public is sent to the CA along with a declaration

declaration = { requester = str("Alice"),

 statement = str("I am stuck in Wonderland") }

-- Requester sends to CA -->

-- ... once upon a time ...

-- --> CA receives from Requester

-- keypair for CA (known to everyone as the Mad Hatter)

CA = keygen(random,order)

-- from here the CA has received the request

certkey = keygen(random,order)

-- certkey.private is sent to requester

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 12 evalutation of prototypes and

 integration

-- certkey.public is broadcasted

-- public key reconstruction data

certpub = certreq.public + certkey.public

-- the certification is serialized (could use ASN-1 or X509)

certification = { public = certpub,

 requester = declaration.requester,

 statement = declaration.statement,

 certifier = str("Mad Hatter") }

CERT = sha256(OCTET.serialize(certification))

CERThash = INT.new(CERT, order)

-- private key reconstruction data

certpriv = (CERThash * certkey.private + CA.private) % order

-- CA sends to Requester certpriv and CERThash

-- eventually CA broadcasts certpub and CERThash

-- ... on the other side of the mirror ...

-- Alice has received from the CA the certpriv and CERT

-- which can be used to create a new CERTprivate key

CERTprivate = (certpriv + CERThash * certreq.private) % order

-- Anyone may receive the certpub and CERThash and, knowing the CA

-- public key, can recover the same CERTpublic key from them

CERTpublic = certpub * CERThash + CA.public

-- As a proof here we generate the public key in a standard way,

-- multiplying it by the curve generator point, then check equality

assert(CERTpublic == G * CERTprivate)

print "Certified keypair:"

I.print({ private = CERTprivate:octet():base64(),

 public = CERTpublic:octet():base64() })

At last, the implementation in Zencode follows, clearly showing the simplification made

possible by Zenroom for the ECQV implicit certificate cryptographic scheme. Each of the

following "scenarios" are blocks of code that can be executed independently from one

another, taking validated input and output data structures.

-- Zenroom 0.9

Scenario 'keygen': $scenario

 Given that I am known as 'MadHatter'

 When I create my new keypair

 Then print my keyring

Scenario 'request': Make my declaration and request certificate

 Given that I introduce myself as 'Alice'

 and I have the 'public' key 'MadHatter' in keyring

 When I declare to 'MadHatter' that I am 'lost in Wonderland'

 and I issue my implicit certificate request 'declaration'

 Then print all data

Scenario 'keygen': $scenario

 Given that I am known as 'Alice'

 and I have a 'declaration_public' 'from' 'Alice'

 Then print data 'declaration_public'

Scenario 'keygen': $scenario

 Given that I am known as 'Alice'

 and I have a 'declaration_keypair'

 Then print data 'declaration_keypair'

Scenario 'issue': Receive a declaration request and issue a certificate

 Given that I am known as 'MadHatter'

 and I have a 'declaration_public' 'from' 'Alice'

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 13 evalutation of prototypes and

 integration

 and I have my 'private' key in keyring

 When I issue an implicit certificate for 'declaration_public'

 Then print all data

Scenario 'split': Print the public section of the certificate

 Given I have a 'certificate_public' 'from' 'MadHatter'

 When possible

 Then print data 'certificate_public'

Scenario 'split': Print the private section of the certificate

 Given I have a 'certificate_private'

 When possible

 Then print data 'certificate_private'

Scenario 'save': Receive a certificate of a declaration and save it

 Given I have a 'certificate_private' 'from' 'MadHatter'

 and I have the 'private' key 'declaration_keypair' in keyring

 When I verify the implicit certificate 'certificate_private'

 Then I print data 'declaration'

Scenario 'keygen': $scenario

 Given that I am known as 'Bob'

 When I create my new keypair

 Then print my keyring

Scenario 'challenge': Receive a certificate of a declaration and use it to encrypt a message

 Given that I am known as 'Bob'

 and I have my 'private' key in keyring

 and that 'Alice' declares to be 'lost in Wonderland'

 and I have a 'certificate' 'from' 'MadHatter'

 When I draft the text 'Hey Alice! can you read me?'

 and I use 'certificate' key to encrypt the text into 'ciphertext'

 Then I print data 'ciphertext'

Scenario 'respond': Alice receives an encrypted message, decrypts it and sends an encrypted answer back to sender

 Given that I am known as 'Alice'

 and I have my 'private' key in keyring

 When I decrypt the 'ciphertext' to 'decoded'

 and I use 'certificate' key to encrypt 'decoded' into 'answer'

 Then I print data 'answer'

The Zencode language is a DSL enforcing a strong declarative behavior underneath and

all base data structures are checked against a validation scheme upon input and output.

The checks are also of cryptographic nature, for instance public keys are checked to

make sure they are actual points on the elliptic curve in use. Here below the data

validation schemes so far in use:

_G['schemas'] = {

 -- packets encoded with AES GCM

 AES-GCM = S.record {

 checksum = S.hex,

 iv = S.hex,

 schema = S.Optional(S.string),

 text = S.hex,

 zenroom = S.Optional(S.string),

 encoding = S.string,

 curve = S.string,

 pubkey = S.ecp

 },

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 14 evalutation of prototypes and

 integration

 -- zencode_keypair

 keypair = S.record {

 schema = S.Optional(S.string),

 private = S.Optional(S.hex),

 public = S.ecp

 },

 -- zencode_ecqv

 certificate = S.record {

 schema = S.Optional(S.string),

 private = S.Optional(S.big),

 public = S.ecp,

 hash = S.big,

 from = S.string,

 authkey = S.ecp

 },

 certificate_hash = S.Record {

 schema = S.Optional(S.string),

 public = S.ecp,

 requester = S.string,

 statement = S.string,

 certifier = S.string

 },

 declaration = S.record {

 schema = S.Optional(S.string),

 from = S.string,

 to = S.string,

 statement = S.string,

 public = S.ecp

 },

 declaration_keypair = S.record {

 schema = S.Optional(S.string),

 requester = S.string,

 statement = S.string,

 public = S.ecp,

 private = S.hex

 }

}

2.3.3. Blind-signed attribute credentials

The ECQV Zencode implementation described in the previous chapter has offered an

important occasion to refine our language by modeling it to serve a well tested and fairly

complex cryptographic sceme. It has however strong limits for the work envisioned in

DECODE pilots and especially with regards to the "Privacy by Design" (Colesky et al., 2016;

Danezis et al., 2015; Hoepman, 2014) recommendations we are ought to follow. To

summarize ECQV limits:

 The use of certifications is traceable as crypto-materials aren't blinded and can be

individuated across communication logs (or a ledger in case of adoption of DLTs)

 Two-way communication needs to take place for every single step: between the

requester and the issuer, as well between the verifier and the requester.

 Especially when executed in a remotely networked situation, the certification

scheme is prone to man-in-the-middle attacks (Adrian et al., 2015)

To overcome these and other limits of cryptographic implementations typically based on

Diffie-Hellman keypairs, this document moves forward with the implementation of a

"Threshold Issuance Selective Disclosure Credentials" system named Coconut (Sonnino et

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 15 evalutation of prototypes and

 integration

al., 2018) and developed by colleagues at UCL to specifically address the

challenges posed by the development of a open blockchain in the scenarios outlined by

DECODE's pilots.

Coconut offers several advantages for our use-cases:

 it allows for multiple certificate authorities to sign credentials.

 it provides blind-signature verifications for both issued and proven credentials,

ready for use on a DLT.

 it relatively small sized keys and credentials, even when several authorities are

involved.

 it provides optional support for threshold based credential validation which will be

especially useful when DECODE is deployed on an open blockchain.

2.3.4. Coconut Implementation

The implementation of Coconut requires PAIR EC crypto operations (and in particular the

"Miller Loop" on twisted curve space) for which we specifically adopt the BLS3833 curve

proposed by Milagro's developers for these kinds of operations. Other PAIRING capable

curves will work as well, but have not been tested.

local g1 = ECP.generator()

local g2 = ECP2.generator()

local o = ECP.order()

-- stateful challenge hardcoded string

local hs = ECP.hashtopoint(str([[

Developed for the DECODE project

]] .. coco._LICENSE))

local challenge = g1:octet() .. g2:octet() .. hs:octet()

-- random generator init

local random = RNG.new()

local function rand() return INT.new(random,o) end

-- El-Gamal cryptosystem

function coco.elgamal_keygen()

 local d = rand()

 local gamma = d * g1

 return d, gamma

end

function coco.elgamal_enc(gamma, m, h)

 local k = rand()

 local a = k * g1

 local b = gamma * k + h * m

3 There is no academic documentation on the BLS383 curve yet, its integrity is tested empirically across the

various implementations of the Milagro crypto library.

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 16 evalutation of prototypes and

 integration

 return a, b, k

end

function coco.elgamal_dec(d, a, b)

 return b - a * d

end

-- local zero-knowledge proof verifications

local function to_challenge(list)

 return INT.new(sha256(challenge .. OCTET.serialize(list)))

end

local function make_pi_s(gamma, cm, k, r, m)

 local h = ECP.hashtopoint(cm)

 local wk = rand()

 local wm = rand()

 local wr = rand()

 local Aw = g1 * wk

 local Bw = gamma * wk + h * wm

 local Cw = g1 * wr + hs * wm

 local c = to_challenge({ cm, h, Aw, Bw, Cw })

 local rk = wk:modsub(c * k, o)

 local rm = wm:modsub(c * m, o)

 local rr = wr:modsub(c * r, o)

 return { c = c,

 rk = rk,

 rm = rm,

 rr = rr }

end

function coco.verify_pi_s(gamma, ciphertext, cm, proof)

 local h = ECP.hashtopoint(cm)

 local a = ciphertext.a

 local b = ciphertext.b

 local c = proof.c

 local rk = proof.rk

 local rm = proof.rm

 local rr = proof.rr

 local Aw = a * c + g1 * rk

 local Bw = b * c + gamma * rk + h * rm

 local Cw = cm * c + g1 * rr + hs * rm

 return c == to_challenge({ cm, h, Aw, Bw, Cw })

end

local function make_pi_v(vk, sigma_prime, m, r)

 local wm = rand()

 local wr = rand()

 local Aw = g2 * wr + vk.alpha + vk.beta * wm

 local Bw = sigma_prime.h_prime * wr

 local c = to_challenge({ vk.alpha, vk.beta, Aw, Bw })

 local rm = wm:modsub(m * c, o)

 local rr = wr:modsub(r * c, o)

 return { c = c, rm = rm, rr = rr }

end

local function verify_pi_v(vk, kappa, nu, sigma_prime, proof)

 local c = proof.c

 local rm = proof.rm

 local rr = proof.rr

 local Aw = kappa * c + g2 * rr + vk.alpha * INT.new(1):modsub(c,o) + vk.beta * rm

 local Bw = nu * c + sigma_prime.h_prime * rr

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 17 evalutation of prototypes and

 integration

 return c == to_challenge({ vk.alpha, vk.beta, Aw, Bw })

end

-- Public Coconut API

function coco.ca_keygen()

 local x = rand()

 local y = rand()

 local sk = { x = x,

 y = y }

 local vk = { g2 = g2,

 alpha = g2 * x,

 beta = g2 * y }

 -- return keypair

 return { sign = sk,

 verify = vk }

end

function coco.cred_keygen()

 local d, gamma = ELGAMAL.keygen()

 return { private = d,

 public = gamma }

end

function coco.prepare_blind_sign(gamma, secret)

 local m = INT.new(sha256(str(secret)))

 local r = rand()

 local cm = g1 * r + hs * m

 local h = ECP.hashtopoint(cm)

 local a, b, k = ELGAMAL.encrypt(gamma, m, h)

 local c = {a = a, b = b}

 local pi_s = make_pi_s(gamma, cm, k, r, m)

 -- return Lambda

 return { cm = cm,

 c = c,

 pi_s = pi_s }

end

function coco.blind_sign(sk, gamma, Lambda)

 local ret = coco.verify_pi_s(gamma, Lambda.c, Lambda.cm, Lambda.pi_s)

 assert(ret == true, 'Proof pi_s does not verify')

 local h = ECP.hashtopoint(Lambda.cm)

 local a_tilde = Lambda.c.a * sk.y

 local b_tilde = h * sk.x + Lambda.c.b * sk.y

 return { h = h,

 a_tilde = a_tilde,

 b_tilde = b_tilde }

end

function coco.aggregate_creds(d, sigma_tilde)

 local agg_s = ELGAMAL.decrypt(d, sigma_tilde[1].a_tilde, sigma_tilde[1].b_tilde)

 if #sigma_tilde > 1 then

 for i = 2, #sigma_tilde do

 agg_s = agg_s + ELGAMAL.decrypt(d, sigma_tilde[i].a_tilde, sigma_tilde[i].b_tilde)

 end

 end

 return { h = sigma_tilde[1].h,

 s = agg_s }

end

function coco.prove_creds(vk, sigma, secret)

 local m = INT.new(sha256(str(secret)))

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 18 evalutation of prototypes and

 integration

 local r = rand()

 local r_prime = rand()

 local sigma_prime = { h_prime = sigma.h * r_prime,

 s_prime = sigma.s * r_prime }

 local kappa = vk.alpha + vk.beta * m + vk.g2 * r

 local nu = sigma_prime.h_prime * r

 local pi_v = make_pi_v(vk, sigma_prime, m, r)

 -- return Theta

 local Theta = {

 kappa = kappa,

 nu = nu,

 sigma_prime = sigma_prime,

 pi_v = pi_v }

 return Theta

end

function coco.verify_creds(vk, Theta)

 local ret = verify_pi_v(vk, Theta.kappa, Theta.nu, Theta.sigma_prime, Theta.pi_v)

 assert(ret == true, 'Proof pi_v does not verify') -- verify zero knowledge proof

 local ret1 = not Theta.sigma_prime.h_prime:isinf()

 local ret2 = ECP2.miller(Theta.kappa, Theta.sigma_prime.h_prime)

 == ECP2.miller(vk.g2, Theta.sigma_prime.s_prime + Theta.nu)

 return ret1 and ret2

end

The data formats used in Coconut are validated by Zencode (not by this Lua underlying

implementation) and defined using the same names used in the Coconut paper as

follows:

 coconut_ca_vk = S.record {

 g2 = S.hex,

 alpha = S.hex,

 beta = S.hex

 },

 coconut_ca_sk = S.record {

 x = S.int,

 y = S.int

 },

 coconut_ca_keypair = S.record {

 schema = S.Optional(S.string),

 version = S.Optional(S.string),

 verify = S.table,

 sign = S.table

 },

 coconut_req_keypair = S.record {

 schema = S.Optional(S.string),

 version = S.Optional(S.string),

 public = S.ecp,

 private = S.hex

 },

 coconut_pi_s = S.record {

 rr = S.int,

 rm = S.int,

 rk = S.int,

 c = S.int

 },

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 19 evalutation of prototypes and

 integration

 coconut_sigmatilde = S.record {

 schema = S.Optional(S.string),

 version = S.Optional(S.string),

 h = S.ecp,

 b_tilde = S.ecp,

 a_tilde = S.ecp

 },

 coconut_aggsigma = S.record {

 schema = S.Optional(S.string),

 version = S.Optional(S.string),

 h = S.ecp,

 s = S.ecp

 }

}

This implementation is fully covered by tests and following lab-tests has been proven to

work reliably. It is probably the most advanced implementation of a cryptographic

scheme in Zenroom and as such has been taken as an important reference to define the

the Zencode language, which is illustrated in the following chapter.

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 20 evalutation of prototypes and

 integration

3. Evaluation of prototypes

In order to better explain the potential offered by the Zencode Domain Specific

Language (DSL) to DECODE's prototypes its important to understand the versatility of its

usage. Approaches may change on a domain-specific basis and its possible to tailor and

simplify usage on the specific context it applies to.

As we are on the quest to merge the description of an algorithm with its executive

expression we get close to the concept of a speech act that refers to a specific context

and adopts a limited taxonomy which may or may not be inscribed in a larger ontology.

It is very important to understand that the boxes in the flow diagrams shown contain

actual Zencode meaning that is not just a description, but is source-code that is

interpreted and executed by the Zenroom VM to accomplish the tasks described. It is then

the main way to faithfully describe what the prototype does internally with the data: each

of the prototypes built in DECODE can simply visualize the Zencode that is running to

inform any operator of what is going on.

This solution has been realized after trying many different approaches involving visual

programming and block programming, which were perhaps richer visually, but less

integrated and in general consisting of a way to represent code rather than code itself.

The final Zencode solution is also simplier to implement for prototyped host applications.

At the time of writing our explanation can be based on an extended experimentation of

in-vitro usage (lab tests) and a limited experimentation of in-vivo usage mostly bound to

the conceptualization of use-cases in the IoT pilot and the Amsterdam's register pilot. In

order to extend the coverage of Zencode to more pilots, we need to have a completed

implementation of the underlying cryptographic contract, in this case the petition.

What follows is a brief visualisation of what is realised so far. In particular the first

visualisation below refers to the implementation of an asymmetric cryptographic

exchange in the fashion of the PGP implementation, based on an exchange of

pulic/private keys and their collection into a keyring:

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 21 evalutation of prototypes and

 integration

This simplified flow diagram shows actual Zencode that can be executed, higlighting

variables that are normally just surrounded by single quotes. Between each code block,

which is executed asynchronously as required and at different times, there is a schema

which indicates the shape of data in output.

What follows is another flow diagram leading to data outputs that can be reused into the

above: is the use of ECQV implicit certificates via Zencode, which leads to obtaining

public/private keypairs that are compatible with asymmetric encryption.

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 22 evalutation of prototypes and

 integration

At last, below is a diagram showing again the code and the data-structures of the

credential authentication mechanism implemented following the Coconut paper

(Sonnino et al., 2018) and illustrating the flow of request, issue and publication of

credentials outlined in this graph:

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 23 evalutation of prototypes and

 integration

And realised in Zencode language format as illustrated by the following figure:

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 24 evalutation of prototypes and

 integration

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 25 evalutation of prototypes and

 integration

3.1. Implementations

At the time of writing all functional prototypes in DECODE are embedding Zenroom and

can therefore seamlessly implement Zencode without adding more work to implementors,

but simply substituting the current Lua based Zenroom scripts to their Zencode

implementation. Below a list ofsoftware prototypes also visible at

https://github.com/decodeproject

 Mobile app (Zenroom embedded as a react-native javascript component, soon to

be converted to native https://github.com/DECODEproject/wallet

 IoT encoder (Zenroom embedded via Go bindings)

https://github.com/DECODEproject/iotencoder

 Chainspace (Zenroom binary executed separately) https://chainspace.io

All DECODE pilots benefit from this development which is successfully integrated through

these components. The DECIDIM pilot still needs a working cryptographic implementation

of its petition contract in order to be translated to Zencode; the IoT based pilots can all

immediately benefit from the Zencode implementation of DH asymmetric encryption

based on AES-GCM secure standard; the Amsterdam register pilot can immediately

benefit from the Zencode implementation of ECQV implicit certificates.

Future horizons of development of Zencode include further implementations supporting

interoperable and extensible crypto schemes on the same EC curve that can still work

with the above implementations, as well further refinement of the parser and extension of

the schema validation. From this point onwards Zencode must be informed by piloting,

while it will be also refined in cooperation with legal experts to match the smart-rule

statements so far identified to express consensual data processing conditions.

https://github.com/decodeproject
https://github.com/DECODEproject/wallet
https://github.com/DECODEproject/iotencoder
https://chainspace.io/

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 26 evalutation of prototypes and

 integration

4. Integration

The integration of Zencode is so far relying on the same integration schemes present for

Zenroom, with the addition of a minimal layer of boilerplate code for its execution. This is

so to facilitate flexibility in piloting, but will be later changed to lock down to the sole

execution of Zencode via new specific API calls.

Therefore, for now, in addition to the C call that we have exported to Java, Go, Python

and Javascript languages along with utility wrappers:

int zenroom_exec(char *script, char *conf, char *keys,

 char *data, int verbosity);

We also have the boilerplate internal to the 'script' buffer:

verbosity_level = 1

ZEN:begin(verbosity_level)

ZEN:parse([[

-- your zencode here

]])

ZEN:run()

The execution of actual Zencode lines happens sequentially at the time of the 'ZEN:run()'

call. Each line as part of the whole statement block (utterance) makes use of data types

which may or may be validated and should be present in the KEYS and DATA buffers. A list

of Zenroom/Zencode integrated implementations follow: they have been developed in

relation to each pilot software implementation as needed, covering several languages.

 Go language bindings https://github.com/DECODEproject/zenroom-go

 Python language bindings https://github.com/DECODEproject/zenroom-py

 Java (JNI) and SWIG (universal) language bindings are inside Zenroom's source

repository https://github.com/DECODEproject/zenroom

Also notable the presence of the 'zenroom' module inside the NodeJS Package Manager

collection (NPM) and of course its extremely portable WebAssembly optimized build

(universal binary) see: https://www.npmjs.com/package/zenroom

As well the packaging of a Docker container:

https://hub.docker.com/r/dyne/zenroom

Even considering the work ahead to integrate needs of pilots into cryptographic contracts

that need to be translated to Zenroom and then wrapped into Zencode, it is evident that

the way we engineered the Zenroom VM and the Zencode DSL will make it easy to

integrate it in new applications.

https://github.com/DECODEproject/zenroom-go
https://github.com/DECODEproject/zenroom-py
https://github.com/DECODEproject/zenroom
https://www.npmjs.com/package/zenroom
https://hub.docker.com/r/dyne/zenroom

H2020-ICT-2016-1 DECODE D3.6 Smart Rules implementation,

 27 evalutation of prototypes and

 integration

5. Bibliography

Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A., Heninger,

N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow, E., Zanella-

Béguelin, S., Zimmermann, P., 2015. Imperfect Forward Secrecy: How Diffie-Hellman

Fails in Practice. Presented at the Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, ACM, pp. 5–17.

https://doi.org/10.1145/2810103.2813707

Ascott, R., 1990. Is There Love in the Telematic Embrace? Art J. 49, 241.

Colesky, M., Hoepman, J.-H., Hillen, C., 2016. A critical analysis of privacy design strategies,

in: Security and Privacy Workshops (SPW), 2016 IEEE. IEEE, pp. 33–40.

Danezis, G., Domingo-Ferrer, J., Hansen, M., Hoepman, J.-H., Metayer, D.L., Tirtea, R.,

Schiffner, S., 2015. Privacy and Data Protection by Design-from policy to

engineering. ArXiv Prepr. ArXiv150103726.

Diakopoulos, N., 2016. Accountability in algorithmic decision making. Commun ACM 59,

56–62.

Hoepman, J.-H., 2014. Privacy design strategies, in: IFIP International Information Security

Conference. Springer, pp. 446–459.

Monico, F., 2014. Premesse per una costituzione ibrida.: la macchina, la bambina

automatica e il bosco. AutAut Condizione Postumana.

Pelizza, A., Kuhlmann, S., 2017. Mining Governance Mechanisms. Innovation policy,

practice and theory facing algorithmic decision-making. Handb. Cyber-Dev.

Cyber-Democr. Cyber-Def.

Roio, D., 2018. Algorithmic Sovereignty (PhD Thesis). University of Plymouth.

Sassen, S., 1996. Losing Control? Sovereignty in an Age of Globalization. Columbia

University Press.

Sonnino, A., Al-Bassam, M., Bano, S., Danezis, G., 2018. Coconut: Threshold Issuance

Selective Disclosure Credentials with Applications to Distributed Ledgers. ArXiv

Prepr. ArXiv180207344.

Wynne, A., 2012. The Cucumber Book: Behavior-Driven Development for Testers and

Developers.

